
Verification Methodology of Compatible Micropi~ocessors

Joon-Seo Yim, Chang-Jae Park, Woo-Seung Yang, Hun-Seung Oh, Hee-Chclul Lee, Hoon Choi,
Tae-Hoon Kim, Seung-Jong Lee, Nara Won, Yung-Hei Lee, In-Cheol Park and Chong-Min Kyung

Department of Electrical Engineering
KAIST

Taejon, 305-701, Korea
Tel: +82-42-866-0700
Fax: +82-42-866-0702

e-mail: kyung@dalnara.kaist.ac.kr

Abstract- As the complexity of high-performance
microprocessor increases, functional verification be-
comes more difficult and emerges as the bottleneck of
the design cycle. In this paper, we suggest a functional
verification methodology, especially for the compati-
ble microprocessor design. To guarantee the perfect
compatibility with previous microprocessors, we de-
veloped three C models in different representation lev-
els, z . ~ , Polorzs, MCV(Mzcro-Code Verzfier) and StreC. C
models are co-simulated with consistency checking be-
tween different two models. The simulation speed of
C models makes it possible to test the “real-world”
application programs on the RTL design with a soft-
ware board model. To increase the confidence level of
verifications, Pro$ler reports the verification coverage
of the test vector, which is fed back to the automatic
test program generator. Restortabzlzty feature also helps
significantly reduce the total simulation time. Using
the proposed verification methodology, we designed
and verified an Intel 486-compatible microprocessor
successfully.

I. INTRODUCTION

The advancement of semiconductor technology has
made it feasible to integrate more than ten million transis-
tors on a single chip and to operate at faster than 500MHz
clock speed. This astounding chip complexity has re-
sulted in difficiilties in the verification[l, 2, 3, 4, 5 , 6, 71.
Moreover, recent microprocessors tend to maintain the
instruction-level compatibility with the previous ones to
save huge efforts for application software development [2].
Though compatibility can be best guaranteed by an ex-
haustive simulation with real application programs, the
simulation time increases drastically as the design com-
plexity increases and has been a bottleneck in a complex
microprocessor design.

Therefore, it is crucial to verify the functionality of
design and eliminate errors at an early stage of the de-
sign. Eradicating the functional bugs which are alive un-

173

til the final gate level simulation requires excessively large
amount of computing time anc debugging efforts. Effi-
cient verification methodologies become vital to the suc-
cess of microprocessor design and their significance will
continue to increase as we mole into more complex de-
signs.

Recently, the verification crisis of microprocessor design
leads to hot research issues both in academia and indus-
try. The hardware emulation[2]. formal verification[l] and
cycle-based simulation[8] have become the state-of-the-art
verification methodologies. Even though the emulation is
widely accepted, it requires too much cost and requires
that the gate level design is tlready finished. There-
fore, it requires large turnaround penalty to fix gate-level
bugs. Formal verification method has been used success-
fully to verify a wide variety of moderate-sized hardware
designs [9] [lo] [ll] [12]. The industry is beginning to
look at formal verification as :a alternative to the sim-
ulation for obtaining higher assurance than is currently
possible. Despite the great increases in the number of
organizations and projects applying formal methods, for-
mal verification is still the case that the vast majority of
potential users of formal m e t h d s fail to become actual
users[l3]. The hardware descrilkion language(HDL) such
as VHDL and Verilog is a conv.nient, method to describe
a hardware, and a cycle-based simulation shows a clear
simulation performance advan ,age over an event-driven
simulator[l4]. However, the geiieral purpose Verilog sim-
ulator is much slower than the (ustom-tailored simulation
using C language. Although hardware accelerators[l5]
yield significant speed-up for thl: gate-level design, they do
not give any advantage for RT or behavior level design.
Most of the design time is consumed by RTL simulation
rather than the description of design itself. We propose
in this paper a low-cost simulation method based on RTL
C model to speed up the RTL Simulation.

To estimate how much time this methodology can save
in a complex microprocessor d 3sign, one needs to under-
stand that a design is not a linear sequence of steps and
there are several iterations through design, simulation, de-

cation. Finally section IV shows some verification results.

11. FUNCTIONAL VERIFICATION

A. Design Flow

A traditional top-down design flow for microproces-
sors is presented in Fig. l (a) . From the design specifi-
cation, design is gradually refined and moved down to the
physical implementation level. An important problem in

Specification

description features code lines model

Polaris Macro instruction behavior register 9,675
MCV Micro-operation behavior register 18,534

StreC Clock-Level RTL Flip-flop,latch 55,415
internal bus

internal bus
combinational

pipeline

Phi 1 edge, Phi 1 level
Phi 2 edge, Phi 2 level

Verilog Clock and event-based RTL Flip-flop,latch 35,223
HDL internal bus

combinational
pipeline
timing

Fig. 1. (a) Traditional ’us. (b) proposed design flow for
microprocessors

In our simulation-based approaches for microprocessor
design, RTL structural design using C language is co-
simulated with a reference model[4, 5, 6, 71, i .e. , a be-
havioral level model or micro-operation level model. Real-
world application programs are executed on these C model
with a software model for the target system .

ware acceleration.
For the CISC microprocessors and FPU, one macro in-

struction consumes multiple cycles, therefore one macro
instruction is subdivided into a number of micro-
operations which is executed in one clock cycle. Micro-
operations are closely related to the datapath hardware
or exception handling scheme. MCV(1Micro Code Ver-
ifier) verifies a C model describing the micro-operation
level behavior. Neither Polaris nor MCV exactly matches
the timing details as obtained via RTL model as shown
in Fig. 2. However, the speed advantage of Polaris and
MCV makes them to be used as “golden” reference model
of RTL micro-architecture design.

To verify all the cases which can occur in real system,
such as hardware interrupts, multiple memory and 1/0
cycles, it is necessary to simulate through real-world pro-
grams rather than by instructions. To run the real-world
programs in design model, a software model of system
board[3] called VPC(Virtua1 PC) is developed. VPC con-
tains the software models of all PC components. It in-

174

Polaris

MCV

Vldeo Display

StreC

1 1

Fig. 2. Timing of each model

cludes main memory, hard/floppy disk drive, interrupt
controller, timer, keyboard, and video display linked to X
window system on the workstation as shown in Fig. 3.

HardIFloppy Disk

Fig. 3. VPC(Virtua1 PC) model interfaced with various simulators
i.e., Polaris, MCV, StreC and Verilog

C. StreC : RTL C model

Traditionally, RTL description is based on HDL such as
Verilog. To achieve high simulation speed, we described
RTL operation in C language. This model called StreC
accurately describes the cycle-by-cycle synchronous logic
behavior as shown in Fig. 4. All the registers, combina-
tional signals and clocks are declared as global variables.
All the flip-flop and latch are updated simultaneously at
the edge of clocks, Phi l and Phi2 as shown in Fig 4.
The combinational logics are evaluated at the interme-
diate point of Phi l and Phi2. Fig. 5 shows the RTL logic
blocks stylized as C subroutines. Top module calls all the
block subroutines in succession at the two clock edges and
two clock levels.

As StreC is not event-driven, special care should be
taken to allow signals to flow correctly between modules.
Signal Fiow Graph(SFG), which represents the prece-
dence relations and temporal relations, is very useful for
correcting maqy tricky timing problems which, although
unveiled during the C-level simulation, can later be de-
tected as hardware bugs.

To describe the synchronous circuit operation in C is
not a simple job, it requires cautious efforts such as static
signal ordering and asynchronous loop removal. But most

of the design time is consumed 1)y simulation rather than
the description of design itself.

The speed advantage of C over the general-purpose
HDL is liken to the assemblq programming over the
compiler-assisted high level language programming. Even
though the hardware descriptio11 using C is difficult than
the well-formalized VHDL or 'Jerilog in many aspects,
its simulation speed can be ve1.y fast than the general-
purpose commercial simu1atio.i engines. StreC was
mainly used to design and debug the micro-architecture
of K486. The RTL model runs Frogram at 1400 cycle/sec
as shown in Table 11.

main()

inputsim-condition(IPC,SAVE,T tACE,RESTART,PROFILE);
if(RESTART) Load-Status();

while(!simDone){
if(SAVE) Save-Status();
clock++;

/* phi1 phase */
P 1E-evaluation();
Update-flipflop();
P 1 L-evaluation() ;

/* phi2 phase */
P2E_evaluation();
Update-flipflop() ;
P 2L_evaluation() ;
if(microcode. sequence == 1nstr.End){

if(1PC) model-differencz-check();
InstructionCountSS;

1
1
reportsimstatistics(PROF1LE);

Fig. 4. Top module of StreC increases the clock counter for each
cycle and calls C subroutines in sequimce for PlE, P lL , P2E and
P2L

hi1 edge() ' assignReg(FF1);
assignReg(FF2):
assignReg(FF5): ' hi1 level0

~ Comb2 = tZ(FFI,FF2),

hi2 edge() ' - assignReg(FF3);
~ assignReg(FF4);

phiZ_levelO

P - Comb1 = fl(FFl);

I Comb3 = B(FF4);

Comb4 Comb5 = = f4(FFZ,FF3,Comh3); fi(Comb3):

, Latch1 = comb4;

Fig. 5 . (a)Signal Flow Graph showing the clock timing of
flip-flops(FF's) and latches, (b) symtols for SFG and (c) the
corresponding RTL C description, 2- ,base clocking scheme was
assumed.

175

D. Consistency Check

In traditional approaches [4, 51, simulation traces of
both a reference model and RTL model are dumped. The
reference trace captures how the architecturally visible
states change as a result of instruction execution. The
RTL trace represents the internal flip-flops, and combina-
tional signals as well as state registers, instruction pointer,
address, bus value, and flags as a result of executing the
same sequence of instructions. After finishing the long
simulation, the post-analysis tool compares two trace files.
If some inconsistencies were detected, design error was
reported. For a long simulation, the trace file size may
be enormously larger than several Giga bytes. Moreover,
dumping of trace file slows-down the simulation by 5 or 6
times.

As an alternative, we use a dynamic consistency check
mechanism using IPC(1nterprocess Communications) in
UNIX[lG] during the co-simulation. It neither requires
extra trace files nor degrades the simulation speed.

StreC and MCV(or MCV and Polaris) run in parallel.
When StreC completes one instruction execution, StreC
sends its results to MCV, while MCV waiting for the re-
sults of StreC compares the received results with its own
results and then tells StreC whether the results are con-
sistent or not. Simulation stops when the differences are
detected. Our experiment has shown that IPC yields a
speed degradation of 10 - 20 %, depending on circuit size.

In MCV, all micro-operations are executed in a single
cycle. However, because of many advanced implementa-
tion features, such as pipeline, cache, delayed handling
and buffer, two models may not be identical. In StreC,
the micro-operations can be delayed by more than one
cycle. For example, the instruction counter, specific reg-
ister values and memory map may be shifted by one cycle,
but this does not mean errors in reality. An intelligence
is needed for the simulation engineer to differentiate the
real bugs from artifacts.

X window-based micro-architecture tool displays in-
formation such as register values, micro-operations and
memory content on the screen. The designers eradicate
the hardware bugs using both the micro-architecture tool
and waveform displayer of RTL trace as shown in Fig. 6 .

E. Piggyback

Once the RTL C model is verified, it is one-to-one
translated into the synthesizable Verilog code. During
the translation process, some errors may arouse in Ver-
ilog model T h e r e a r e t h r e e candidates to confirm the
correct translation. The first one is to assert test vec-
tors into block Verilog model. The only block boundary
inlout signals are traced from the RTL C simulation, then
the input signals are asserted and outputs are compares
with trace file. The drawback of this approach is that .
the amount of trace is enormously large like as hundreds
of mega bytes. The second one is to substitute a spe-

hlteCtUm Window ‘ a I Debugging

* 0 0 I

Fig. 6 . Dynamic consistency checking between two C models
during the co-simulation

cific block in C with a Verilog model as shown in Fig. 7-
(a). C and Verilog interface is done by PLI(Programming
Language Interface)[l4]. In this case, the bug locat-
ing may requires large efforts. We use another method
called “piggyback” [G , 71. This is a co-simulation tech-
nique. Original C model for BUT(b1ock under test), and
Verilog model for BUT run concurrently. Verilog BUT
“rode on the back” of the complete C model. The impor-
tant distinction between substitution and piggybacking is
that, in piggybacking, both the StreC and Verilog BUT
run simultaneously. Verilog model receives a block ex-
ternal inputs from C model, but the outputs from Verilog
model are not feed into C model. The output signals from
Verilog model are compared with the output signals from
C model. In addition to the external outputs from the
BUT, many internal signals are also compared. Because
there is a close correlation between C model and Verilog
model, bugs in Verilog model can be quickly detected and
isolated.

Running the RTL C simultaneously adds little overhead
to the Verilog simulation because C is very fast than Ver-
ilog. This technique proved to be a very effective way of
comparing the two models’ consistency and obviated the
need to extract and maintain large trace file.

Fig. 7. Consistency Check between C model(StreC) and Verilog
model (a) Substitution us. (b) Piggyback

176

111. PRODUCTIVITY

A. Debugging Cost

Most of bugs found during RTL simulation result from
the interaction between modules under various combina-
tions of events. As these bugs are difficult to detect at the
block level, designers hurry to integrate all the modules
without complete assurance of all blocks being error-free.
However, when the test vectors are applied to the fully
integrated system-level design, the amount of simulation
time soars, significantly degrading the design turnaround.
The design complexity of complex microprocessor made
it necessary to apply the “divide-and-conquer” method,
i . e . , “module-by-module” test should precede the “post-
integration” debugging. In the debugging of a module
called Kunit in K486, about 86 % of bugs were found be-
fore the integration or during the integration, while the
14% was fixed during the full-chip system-level simulation
after the full integration as shown in Fig. 8.

....................

i Total 78 Bugs in Kunl

i ! :
- 14%.

lnltla, B ~ ~ ~ I (lnllal Initial Poat Integration
Design Design Integration Simulation

Revlew

Fig. 8. Bug eradication curve for Kunit in the K486
microprocessor

During the system-level simulation, many bugs were
detected at an early phase as shown in Fig. 9. Small per-
centage i .e. , 15 % of bugs remaining to the end of the de-
sign process occupies most of simulation time(50% of total
debugging time). Sometimes a “careless” design modifi-
cation may lead to malfunction of another block shown
as a deep canyon at 17 million instructions as shown in
Fig. 9. Regression test should run in company with the
frontier RTL simulation in order to guarantee that pro-
posed bug correction did not corrupt other behaviors.
Built-in checkers, which are parts of RTL model, mon-
itors certain illegal state transitions or the violation of
protocols. This built-in checkers may slow down the sim-
ulation speed, but this performance degradation is com-
pensated by bug-detecting pay-back. At an earlier ver-
ification phases, all the built-in checkers are turned on.
As the design becomes stabilized, minimum checkers are
alive.

B. Test Suites
Good test vectors help find design bugs quickly during

the simulation. We deliberately try to stress the design

Real mode Tss1 Protected mode Test nppl,cat,ons(W,ndow3,,)

Fig. 9. StreC debugging curve to boc t Windows3.1

models to their limit. In our cas:, there are three kinds of
test suites. The first one is hand-crafted test vector, the
second one is very long sequence of instructions generated
in a biased random fashion. The last one is real-world
application programs including 3perating systems.

The first hand-crafted codes are the by-product of X-
86 instruction behavior discovcbry program that scruti-
nizes the real, virtual and prolected model behavior of
X-86 microprocessors. They are computer-generated vec-
tors with a hand-coded templa ,e by architecture design
team and test team for several years. The total number
of hand-crafted test vector amounts to 500. The permu-
tation, iteration and interleavirig of existing instruction
sequences into new sequences and many exceptional cases
which rarely happens in real ap dication software.

The second test program conies from the random test
program generator, called Puni’oru shown in Fig. 10. It
focuses on producing long sequt nces of legal instructions
assuming that the random intcraction of these instruc-
tions will exhaustively cover all the test cases and pro-
duce conditions that rarely ha1)pens. Now, we plan to
develop more intelligent ATPG which generates the high
quality test vector which guarantee the 100% path cov-
erage and 100% arc coverage. (:iven a directed graph of
the FSM(Finite State Machine)’s or micro-code, it should
generate the test programs tl-ia, cause the simulation to
exercise every arc in the graph tiith minimal redundancy.

C. Test Coverage and Profiler

The “debugging-and-redesign ’ is an endless loop, which
can be terminated only by the tape-out schedule. The test
coverage[4, 5, 6, 71 probably is the single most important
measure of the verification quaiity, while such measures
as the volume of test vectors aitd the rate of decrease of
bugs detected are all indirect measures. Random genera-
tion of test vectors for the verif cation of the behavior of
op-code cannot guarantee that z.11 the block interface pro-

177

.!??=T..L.m.s??!?!?!

20

Fig. 10. ATPG(Automatic Test Program Generator) called
Pandora generates more than 300 test programs with the biasing
information of instruction and operand type

I I
-* DOS Windows3 1

1 I
c

~

tocols and complex state machine traversals are covered.
State-of-the-art microprocessors include complex hard-
ware schemes such as instruction pipelining, branch pre-
diction, superscalar multiple pipes, external bus buffering,
multiprocessor cache, and many exceptional cases. Enu-
merating all the test combinations of various situations,
signal paths, and FSM transitions is nearly impossible.

Therefore, reports on the coverage statistics are nec-
essary to determine what percentage of events were cov-
ered and what events are to be covered. Profiler gives
test coverage metrics such as instruction coverage, micro-
operation mix, FSM transition coverage, pipeline stall
event coverage, and interface protocol coverage. For ex-
ample, Fig. 11 shows the FSM for a controller of segment
unit in the K486, where some arcs are never activated
even after the execution of 20 million instructions. These
uncovered ascs might be responsible for some vicious bugs
which may be captured at the final verification phase or
even too late!

These coverage metrics are used subsequently to im-
prove the quality of the test vector set, and gives the de-
signers a feeling for the overall effectiveness of test vector
set. Without meaningful test coverage metric, all simu-
lation time is wasted by testing cases that are no longer
needed to be tested, while some cases are never excited.

Profiler also reports the performance statistics related
to the utilization of resources such as cache access, cache
hit/miss ratio, buffer, and bus traffics. Some design er-
sor leads to performance degradation without destroying
the functionality. This kind of error is called a perfor-
mance bug, which is difficult to detect. For example, we
monitored the cache hit rate during the simulation. Af-
ter certain situation, it went below 50% for a long time.
We discovered later that there was a wrong description in
the cache controller, but it did not cause any behavioral
problem in booting operating system. Fig. 1 2 shows one

Fig. 11. Number of transitions which occurred among various
states in the state transition diagram of an FSM in running DOS a
pplication programs(after 20 million instructions). It is shown that
some arcs denoted as 'dotted arrow' were not invoked at all. The
Profiler monitors the input signals and the states, and compares
them with previously states given as table format.

example of performance profile.

Fig. 12. Behavior of Cache hit ratio us. the number of instructions
executed during Windows3.1 booting

D. Restartability

Traditional simulation has an important weak point.
Designers usually do not dump the signal trace in the
first simulation because it is impossible to know where
the error should occur beforehand, and the signal trace
overburdens the simulation speed by 5-6 times. There-
fore, if an error is detected, designers simulate once more
from the first instruction to the bug point to dump the
signal trace within the small time interval as shown in
Fig. 13. After the debugging, designers modify the model
and re-simulate from the first instruction. This has been
a tedious but unavoidable process in the traditional sim-
ulator. In our experience, the simulation time is as much
as 15 times that of the debugging itself in a traditional
simulator for the microprocessor level design.

The key point is to save this redundant simulation time

178

Resimulation with IPC 61mYialion W h (lPC, sayer)

Slmuietion ~eata t i pea*

Fig. 14. K486 design milestone
3,d rim $$ 3rdsim

par.

K486 microprocessor consists of pipelined 32-bit integer

Fig. 13. Reduction of simulation time by the save-and-restart
feature of StreC

Model speed(CPS) I DOS I Windows3 1

by providing restartability. StreC saves internal states at
the completion of every K instruction periodically. This
is different from the trace dump. Only the internal states
such as flip-flop signals are saved at a snapshot rather
than long time trace for all signals. This makes it possi-
ble to restart simulation from arbitrary point by loading
the saved snapshot. As most trivial bugs are detected and
design becomes stabilized, the minor modifications of de-
sign have little effects on the system state. Restartability
plays a key role to find more bugs in a shorter time by
reducing the redundant simulation. Using the restartabil-
ity feature, the total simulation time is minimized to 30%
of the traditional simulation approach without restarta-
bility.

IV. RESULT

Fig. 15. 20 million instructions are I xecuted to boot Windows3.1
at StreC for 48 hours

determined completely in the static fashion during the
compile time and the redundan G signal transitions are not
evaluated like as LCC(Levelize, i Compiled-Code) simula-
tor. This gives no expensive ovt,rhead of event scheduling.

TABLE I1
COMPARISON OF SIMULATION S P E E D OF EACH MODELS FOR BOOTING

179

REFERENCES

[1] A.L.Sangiovanni-Vincentelli, et.al., “Verificaiton of Electroic
Systems”,in Proc. DAC, 1996, pp.106-111

[2] Gopi Ganapathy, et.al., “Hardware Emulation for Functional
Verification of K5”,in Proc. DAC, 1996, pp.315-318

[3] Lawrence Yang, et.al., “System Design Methodology of
UltraSPARC-I”,in Proc. DAC, 1995, pp 7-12

[4] Anoosh Hosseini, et.al., “Code Generation and Analysis for
the Functional Verification of Microprocessors” ,in Proc. DAG,
1996, pp.305-310 , 1996

[5] Michael Kantrowitz, et.al., “I’m Done Simulating; Now What?
Verification Coverage Analysis and Correctness Checking of
the DECchip 21164 Alpha microprocessor”,in Proc. DAC,
1996, pp.325-330 , 1996

[6] Richard A. Lethin, et.al., “MDP Design Tools and Methods”,
in Proc. ICCD, 1992, pp424-435

[7] Walker Anderson, “Logical Verification of the NVAX CPU
Chip Design”, in Proc. ICCD, 1992, pp306-309

[8] “The SpeedSim/3 : Software Simulator”, SpeedSim Inc., ver-
sion 2.0, 1995

[9] Steven P. Miller and Mandayam Srivas. ”Formal Verification
of the AAMPS microprocessor: A case study in the industrial
use of formal methods,” WIF ’95: Workshop on Industrial
Strength Formal Specijication Techniques, pp. 2-16, Boca Ra-
ton, FL, 1995, IEEE Computer Society.

[lo] Mandayam K. Srivas and Steven P. Miller. ”Applying Formal
Verification to a Commercial Microprocessor,” CHDL ’95, pp.
, 1995.

[11] Toru Shonai and Tsuguo Shimizu. ”Formal Verification of
Pipelined and Superscalar Processors,” CHDL ’95, pp. 513-
518, 1995.

[12] W.J. Cullyer. ”Implementing Safety-Critical Systems: The
VIPER Microprocessor,” VLSI Specijication, Veri,fication and
Synthesis, pp. 1-25, 1988, Kluwer Academic Publishers,
Boston.

[13] J.P. Bowen and M.G. Hinchey. ”Seven More Myths of For-
mal Methods,” University of Cambridge Computer Laboratory
Technical Report 357, 12pp, January 1995.

[14] “Verilog-XL Reference Manual”, Cadence Design System Inc.,
version 1.6, 1991

[15] “ZyCAD XPlus Logic Simulation”, Zycad Corporation 1994

[16] W.R. Stevens, “Advanced Programming in the UNIX Envi-
ronment,” Addison-Wesley Publishing Company, 1992.

180

