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Abstract- As the complexity of high-performance 
microprocessor increases, functional verification be- 
comes more difficult and emerges as the bottleneck of 
the design cycle. In this paper, we suggest a functional 
verification methodology, especially for the compati- 
ble microprocessor design. To guarantee the perfect 
compatibility with previous microprocessors, we de- 
veloped three C models in different representation lev- 
els, z . ~  , Polorzs, MCV(Mzcro-Code Verzfier) and StreC. C 
models are co-simulated with consistency checking be- 
tween different two models. The simulation speed of 
C models makes it possible to test the “real-world” 
application programs on the RTL design with a soft- 
ware board model. To increase the confidence level of 
verifications, Pro$ler reports the verification coverage 
of the test vector, which is fed back to the automatic 
test program generator. Restortabzlzty feature also helps 
significantly reduce the total simulation time. Using 
the proposed verification methodology, we designed 
and verified an Intel 486-compatible microprocessor 
successfully. 

I. INTRODUCTION 

The advancement of semiconductor technology has 
made it feasible to integrate more than ten million transis- 
tors on a single chip and to operate at  faster than 500MHz 
clock speed. This astounding chip complexity has re- 
sulted in difficiilties in the verification[l, 2, 3,  4, 5 ,  6, 71. 
Moreover, recent microprocessors tend to maintain the 
instruction-level compatibility with the previous ones to 
save huge efforts for application software development [2]. 
Though compatibility can be best guaranteed by an ex- 
haustive simulation with real application programs, the 
simulation time increases drastically as the design com- 
plexity increases and has been a bottleneck in a complex 
microprocessor design. 

Therefore, it is crucial to verify the functionality of 
design and eliminate errors at  an early stage of the de- 
sign. Eradicating the functional bugs which are alive un- 
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til the final gate level simulation requires excessively large 
amount of computing time anc debugging efforts. Effi- 
cient verification methodologies become vital to the suc- 
cess of microprocessor design and their significance will 
continue to increase as we mole into more complex de- 
signs. 

Recently, the verification crisis of microprocessor design 
leads to hot research issues both in academia and indus- 
try. The hardware emulation[2]. formal verification[l] and 
cycle-based simulation[8] have become the state-of-the-art 
verification methodologies. Even though the emulation is 
widely accepted, it requires too much cost and requires 
that the gate level design is tlready finished. There- 
fore, it requires large turnaround penalty to fix gate-level 
bugs. Formal verification method has been used success- 
fully to verify a wide variety of moderate-sized hardware 
designs [9] [lo] [ll] [12]. The industry is beginning to 
look at  formal verification as :a alternative to the sim- 
ulation for obtaining higher assurance than is currently 
possible. Despite the great increases in the number of 
organizations and projects applying formal methods, for- 
mal verification is still the case that the vast majority of 
potential users of formal m e t h d s  fail to become actual 
users[l3]. The hardware descrilkion language(HDL) such 
as VHDL and Verilog is a conv.nient, method to describe 
a hardware, and a cycle-based simulation shows a clear 
simulation performance advan ,age over an event-driven 
simulator[l4]. However, the geiieral purpose Verilog sim- 
ulator is much slower than the ( ustom-tailored simulation 
using C language. Although hardware accelerators[l5] 
yield significant speed-up for thl: gate-level design, they do 
not give any advantage for RT or behavior level design. 
Most of the design time is consumed by RTL simulation 
rather than the description of design itself. We propose 
in this paper a low-cost simulation method based on RTL 
C model to speed up the RTL Simulation. 

To estimate how much time this methodology can save 
in a complex microprocessor d 3sign, one needs to under- 
stand that a design is not a linear sequence of steps and 
there are several iterations through design, simulation, de- 



cation. Finally section IV shows some verification results. 

11. FUNCTIONAL VERIFICATION 

A. Design Flow 

A traditional top-down design flow for microproces- 
sors is presented in Fig. l (a) .  From the design specifi- 
cation, design is gradually refined and moved down to the 
physical implementation level. An important problem in 

Specification 

description features code lines model 

Polaris Macro instruction behavior register 9,675 
MCV Micro-operation behavior register 18,534 

StreC Clock-Level RTL Flip-flop,latch 55,415 
internal bus 

internal bus 
combinational 

pipeline 

Phi 1 edge, Phi 1 level 
Phi 2 edge, Phi 2 level 

Verilog Clock and event-based RTL Flip-flop,latch 35,223 
HDL internal bus 

combinational 
pipeline 
timing 

Fig. 1. (a) Traditional ’us. (b) proposed design flow for 
microprocessors 

In our simulation-based approaches for microprocessor 
design, RTL structural design using C language is co- 
simulated with a reference model[4, 5, 6, 71, i .e. ,  a be- 
havioral level model or micro-operation level model. Real- 
world application programs are executed on these C model 
with a software model for the target system . 

ware acceleration. 
For the CISC microprocessors and FPU, one macro in- 

struction consumes multiple cycles, therefore one macro 
instruction is subdivided into a number of micro- 
operations which is executed in one clock cycle. Micro- 
operations are closely related to the datapath hardware 
or exception handling scheme. MCV(1Micro Code Ver- 
ifier) verifies a C model describing the micro-operation 
level behavior. Neither Polaris nor MCV exactly matches 
the timing details as obtained via RTL model as shown 
in Fig. 2. However, the speed advantage of Polaris and 
MCV makes them to be used as “golden” reference model 
of RTL micro-architecture design. 

To verify all the cases which can occur in real system, 
such as hardware interrupts, multiple memory and 1/0 
cycles, it is necessary to simulate through real-world pro- 
grams rather than by instructions. To run the real-world 
programs in design model, a software model of system 
board[3] called VPC(Virtua1 PC) is developed. VPC con- 
tains the software models of all PC  components. It in- 
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MCV 

Vldeo Display 

StreC 

1 1 

Fig. 2. Timing of each model 

cludes main memory, hard/floppy disk drive, interrupt 
controller, timer, keyboard, and video display linked to X 
window system on the workstation as shown in Fig. 3. 

HardIFloppy Disk 

Fig. 3. VPC(Virtua1 PC) model interfaced with various simulators 
i.e., Polaris, MCV, StreC and Verilog 

C. StreC : RTL C model 

Traditionally, RTL description is based on HDL such as 
Verilog. To achieve high simulation speed, we described 
RTL operation in C language. This model called StreC 
accurately describes the cycle-by-cycle synchronous logic 
behavior as shown in Fig. 4. All the registers, combina- 
tional signals and clocks are declared as global variables. 
All the flip-flop and latch are updated simultaneously at  
the edge of clocks, Phi l  and Phi2 as shown in Fig 4. 
The combinational logics are evaluated at  the interme- 
diate point of Phi l  and Phi2. Fig. 5 shows the RTL logic 
blocks stylized as C subroutines. Top module calls all the 
block subroutines in succession at  the two clock edges and 
two clock levels. 

As StreC is not event-driven, special care should be 
taken to allow signals to flow correctly between modules. 
Signal Fiow Graph(SFG), which represents the prece- 
dence relations and temporal relations, is very useful for 
correcting maqy tricky timing problems which, although 
unveiled during the C-level simulation, can later be de- 
tected as hardware bugs. 

To describe the synchronous circuit operation in C is 
not a simple job, it requires cautious efforts such as static 
signal ordering and asynchronous loop removal. But most 

of the design time is consumed 1)y simulation rather than 
the description of design itself. 

The speed advantage of C over the general-purpose 
HDL is liken to the assemblq programming over the 
compiler-assisted high level language programming. Even 
though the hardware descriptio11 using C is difficult than 
the well-formalized VHDL or 'Jerilog in many aspects, 
its simulation speed can be ve1.y fast than the general- 
purpose commercial simu1atio.i engines. StreC was 
mainly used to design and debug the micro-architecture 
of K486. The RTL model runs Frogram at 1400 cycle/sec 
as shown in Table 11. 

main() 

inputsim-condition(IPC,SAVE,T tACE,RESTART,PROFILE); 
if( RESTART) Load-Status(); 

while( !simDone ){ 
if( SAVE ) Save-Status(); 
clock++; 

/* phi1 phase */ 
P 1E-evaluation(); 
Update-flipflop(); 
P 1 L-evaluation() ; 

/* phi2 phase */ 
P2E_evaluation(); 
Update-flipflop() ; 
P 2L_evaluation() ; 
if( microcode. sequence == 1nstr.End ){ 

if(1PC) model-differencz-check(); 
InstructionCountSS; 

1 
1 
reportsimstatistics(PROF1LE); 

Fig. 4. Top module of StreC increases the clock counter for each 
cycle and calls C subroutines in sequimce for PlE, P lL ,  P2E and 
P2L 

hi1 edge() ' assignReg(FF1); 
assignReg(FF2): 
assignReg(FF5): ' hi1 level0 

~ Comb2 = tZ(FFI,FF2), 

hi2 edge() ' - assignReg(FF3); 
~ assignReg(FF4); 

phiZ_levelO 

P -  Comb1 = fl(FFl); 

I Comb3 = B(FF4); 

Comb4 Comb5 = = f4(FFZ,FF3,Comh3); fi(Comb3): 

, Latch1 = comb4; 

Fig. 5 .  (a)Signal Flow Graph showing the clock timing of 
flip-flops(FF's) and latches, (b) symtols for SFG and (c) the 
corresponding RTL C description, 2- ,base clocking scheme was 
assumed. 
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D. Consistency Check 

In traditional approaches [4, 51, simulation traces of 
both a reference model and RTL model are dumped. The 
reference trace captures how the architecturally visible 
states change as a result of instruction execution. The 
RTL trace represents the internal flip-flops, and combina- 
tional signals as well as state registers, instruction pointer, 
address, bus value, and flags as a result of executing the 
same sequence of instructions. After finishing the long 
simulation, the post-analysis tool compares two trace files. 
If some inconsistencies were detected, design error was 
reported. For a long simulation, the trace file size may 
be enormously larger than several Giga bytes. Moreover, 
dumping of trace file slows-down the simulation by 5 or 6 
times. 

As an alternative, we use a dynamic consistency check 
mechanism using IPC(1nterprocess Communications) in 
UNIX[lG] during the co-simulation. It neither requires 
extra trace files nor degrades the simulation speed. 

StreC and MCV(or MCV and Polaris) run in parallel. 
When StreC completes one instruction execution, StreC 
sends its results to MCV, while MCV waiting for the re- 
sults of StreC compares the received results with its own 
results and then tells StreC whether the results are con- 
sistent or not. Simulation stops when the differences are 
detected. Our experiment has shown that IPC yields a 
speed degradation of 10 - 20 %, depending on circuit size. 

In MCV, all micro-operations are executed in a single 
cycle. However, because of many advanced implementa- 
tion features, such as pipeline, cache, delayed handling 
and buffer, two models may not be identical. In StreC, 
the micro-operations can be delayed by more than one 
cycle. For example, the instruction counter, specific reg- 
ister values and memory map may be shifted by one cycle, 
but this does not mean errors in reality. An intelligence 
is needed for the simulation engineer to differentiate the 
real bugs from artifacts. 

X window-based micro-architecture tool displays in- 
formation such as register values, micro-operations and 
memory content on the screen. The designers eradicate 
the hardware bugs using both the micro-architecture tool 
and waveform displayer of RTL trace as shown in Fig. 6 .  

E. Piggyback 

Once the RTL C model is verified, it is one-to-one 
translated into the synthesizable Verilog code. During 
the translation process, some errors may arouse in Ver- 
ilog model T h e r e  a r e  t h r e e  candidates to confirm the 
correct translation. The first one is to assert test vec- 
tors into block Verilog model. The only block boundary 
inlout signals are traced from the RTL C simulation, then 
the input signals are asserted and outputs are compares 
with trace file. The drawback of this approach is that .  
the amount of trace is enormously large like as hundreds 
of mega bytes. The second one is to substitute a spe- 

hlteCtUm Window ‘ a  ......... I Debugging 

* ..... 0 0  ..... I 

Fig. 6 .  Dynamic consistency checking between two C models 
during the co-simulation 

cific block in C with a Verilog model as shown in Fig. 7- 
(a). C and Verilog interface is done by PLI(Programming 
Language Interface)[l4]. In this case, the bug locat- 
ing may requires large efforts. We use another method 
called “piggyback” [ G ,  71. This is a co-simulation tech- 
nique. Original C model for BUT(b1ock under test), and 
Verilog model for BUT run concurrently. Verilog BUT 
“rode on the back” of the complete C model. The impor- 
tant distinction between substitution and piggybacking is 
that, in piggybacking, both the StreC and Verilog BUT 
run simultaneously. Verilog model receives a block ex- 
ternal inputs from C model, but the outputs from Verilog 
model are not feed into C model. The output signals from 
Verilog model are compared with the output signals from 
C model. In addition to the external outputs from the 
BUT, many internal signals are also compared. Because 
there is a close correlation between C model and Verilog 
model, bugs in Verilog model can be quickly detected and 
isolated. 

Running the RTL C simultaneously adds little overhead 
to the Verilog simulation because C is very fast than Ver- 
ilog. This technique proved to be a very effective way of 
comparing the two models’ consistency and obviated the 
need to extract and maintain large trace file. 

Fig. 7. Consistency Check between C model(StreC) and Verilog 
model (a) Substitution us. (b) Piggyback 
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111. PRODUCTIVITY 

A. Debugging Cost 

Most of bugs found during RTL simulation result from 
the interaction between modules under various combina- 
tions of events. As these bugs are difficult to detect at the 
block level, designers hurry to integrate all the modules 
without complete assurance of all blocks being error-free. 
However, when the test vectors are applied to the fully 
integrated system-level design, the amount of simulation 
time soars, significantly degrading the design turnaround. 
The design complexity of complex microprocessor made 
it necessary to apply the “divide-and-conquer” method, 
i . e . ,  “module-by-module” test should precede the “post- 
integration” debugging. In the debugging of a module 
called Kunit in K486, about 86 % of bugs were found be- 
fore the integration or during the integration, while the 
14% was fixed during the full-chip system-level simulation 
after the full integration as shown in Fig. 8. 

.................... 

i Total 78 Bugs in Kunl 

i ! :  
- 14%. 

lnltla, B ~ ~ ~ I (  lnllal Initial Poat Integration 
Design Design Integration Simulation 

Revlew 

Fig. 8. Bug eradication curve for Kunit in the K486 
microprocessor 

During the system-level simulation, many bugs were 
detected at  an early phase as shown in Fig. 9. Small per- 
centage i .e. ,  15 % of bugs remaining to the end of the de- 
sign process occupies most of simulation time(50% of total 
debugging time). Sometimes a “careless” design modifi- 
cation may lead to malfunction of another block shown 
as a deep canyon at  17 million instructions as shown in 
Fig. 9. Regression test should run in company with the 
frontier RTL simulation in order to guarantee that pro- 
posed bug correction did not corrupt other behaviors. 
Built-in checkers, which are parts of RTL model, mon- 
itors certain illegal state transitions or the violation of 
protocols. This built-in checkers may slow down the sim- 
ulation speed, but this performance degradation is com- 
pensated by bug-detecting pay-back. At an earlier ver- 
ification phases, all the built-in checkers are turned on. 
As the design becomes stabilized, minimum checkers are 
alive. 

B. Test Suites 
Good test vectors help find design bugs quickly during 

the simulation. We deliberately try to stress the design 

Real mode Tss1 Protected mode Test nppl,cat,ons(W,ndow3,,) 

Fig. 9. StreC debugging curve to boc t Windows3.1 

models to their limit. In our cas:, there are three kinds of 
test suites. The first one is hand-crafted test vector, the 
second one is very long sequence of instructions generated 
in a biased random fashion. The last one is real-world 
application programs including 3perating systems. 

The first hand-crafted codes are the by-product of X- 
86 instruction behavior discovcbry program that scruti- 
nizes the real, virtual and prolected model behavior of 
X-86 microprocessors. They are computer-generated vec- 
tors with a hand-coded templa ,e by architecture design 
team and test team for several years. The total number 
of hand-crafted test vector amounts to 500. The permu- 
tation, iteration and interleavirig of existing instruction 
sequences into new sequences and many exceptional cases 
which rarely happens in real ap dication software. 

The second test program conies from the random test 
program generator, called Puni’oru shown in Fig. 10. It 
focuses on producing long sequt nces of legal instructions 
assuming that the random intcraction of these instruc- 
tions will exhaustively cover all the test cases and pro- 
duce conditions that rarely ha1)pens. Now, we plan to 
develop more intelligent ATPG which generates the high 
quality test vector which guarantee the 100% path cov- 
erage and 100% arc coverage. (:iven a directed graph of 
the FSM(Finite State Machine)’s or micro-code, it should 
generate the test programs tl-ia, cause the simulation to 
exercise every arc in the graph tiith minimal redundancy. 

C. Test Coverage and Profiler 

The “debugging-and-redesign ’ is an endless loop, which 
can be terminated only by the tape-out schedule. The test 
coverage[4, 5, 6, 71 probably is the single most important 
measure of the verification quaiity, while such measures 
as the volume of test vectors aitd the rate of decrease of 
bugs detected are all indirect measures. Random genera- 
tion of test vectors for the verif cation of the behavior of 
op-code cannot guarantee that z.11 the block interface pro- 
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Fig. 10. ATPG(Automatic Test Program Generator) called 
Pandora generates more than 300 test programs with the biasing 
information of instruction and operand type 
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tocols and complex state machine traversals are covered. 
State-of-the-art microprocessors include complex hard- 
ware schemes such as instruction pipelining, branch pre- 
diction, superscalar multiple pipes, external bus buffering, 
multiprocessor cache, and many exceptional cases. Enu- 
merating all the test combinations of various situations, 
signal paths, and FSM transitions is nearly impossible. 

Therefore, reports on the coverage statistics are nec- 
essary to determine what percentage of events were cov- 
ered and what events are to be covered. Profiler gives 
test coverage metrics such as instruction coverage, micro- 
operation mix, FSM transition coverage, pipeline stall 
event coverage, and interface protocol coverage. For ex- 
ample, Fig. 11 shows the FSM for a controller of segment 
unit in the K486, where some arcs are never activated 
even after the execution of 20 million instructions. These 
uncovered ascs might be responsible for some vicious bugs 
which may be captured at  the final verification phase or 
even too late! 

These coverage metrics are used subsequently to im- 
prove the quality of the test vector set, and gives the de- 
signers a feeling for the overall effectiveness of test vector 
set. Without meaningful test coverage metric, all simu- 
lation time is wasted by testing cases that are no longer 
needed to be tested, while some cases are never excited. 

Profiler also reports the performance statistics related 
to the utilization of resources such as cache access, cache 
hit/miss ratio, buffer, and bus traffics. Some design er- 
sor leads to performance degradation without destroying 
the functionality. This kind of error is called a perfor- 
mance bug, which is difficult to detect. For example, we 
monitored the cache hit rate during the simulation. Af- 
ter certain situation, it went below 50% for a long time. 
We discovered later that there was a wrong description in 
the cache controller, but it did not cause any behavioral 
problem in booting operating system. Fig. 1 2  shows one 

Fig. 11. Number of transitions which occurred among various 
states in the state transition diagram of an FSM in running DOS a 
pplication programs(after 20 million instructions). It is shown that 
some arcs denoted as 'dotted arrow' were not invoked at all. The 
Profiler monitors the input signals and the states, and compares 
them with previously states given as table format. 

example of performance profile. 

Fig. 12. Behavior of Cache hit ratio us. the number of instructions 
executed during Windows3.1 booting 

D. Restartability 

Traditional simulation has an important weak point. 
Designers usually do not dump the signal trace in the 
first simulation because it is impossible to know where 
the error should occur beforehand, and the signal trace 
overburdens the simulation speed by 5-6 times. There- 
fore, if an error is detected, designers simulate once more 
from the first instruction to the bug point to dump the 
signal trace within the small time interval as shown in 
Fig. 13. After the debugging, designers modify the model 
and re-simulate from the first instruction. This has been 
a tedious but unavoidable process in the traditional sim- 
ulator. In our experience, the simulation time is as much 
as 15 times that of the debugging itself in a traditional 
simulator for the microprocessor level design. 

The key point is to save this redundant simulation time 
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Fig. 14. K486 design milestone 
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K486 microprocessor consists of pipelined 32-bit integer 

Fig. 13. Reduction of simulation time by the save-and-restart 
feature of StreC 

Model speed(CPS) I DOS I Windows3 1 

by providing restartability. StreC saves internal states at 
the completion of every K instruction periodically. This 
is different from the trace dump. Only the internal states 
such as flip-flop signals are saved at  a snapshot rather 
than long time trace for all signals. This makes it possi- 
ble to restart simulation from arbitrary point by loading 
the saved snapshot. As most trivial bugs are detected and 
design becomes stabilized, the minor modifications of de- 
sign have little effects on the system state. Restartability 
plays a key role to find more bugs in a shorter time by 
reducing the redundant simulation. Using the restartabil- 
ity feature, the total simulation time is minimized to 30% 
of the traditional simulation approach without restarta- 
bility. 

IV. RESULT 

Fig. 15. 20 million instructions are I xecuted to boot Windows3.1 
at StreC for 48 hours 

determined completely in the static fashion during the 
compile time and the redundan G signal transitions are not 
evaluated like as LCC(Levelize, i Compiled-Code) simula- 
tor. This gives no expensive ovt,rhead of event scheduling. 

TABLE I1 
COMPARISON OF SIMULATION S P E E D  OF EACH MODELS FOR BOOTING 
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